NORMAL DIVISION ALGEBRAS OF DEGREE p^* OVER F OF CHARACTERISTIC p^*

RV

A. ADRIAN ALBERT

1. Introduction. In a recent paper \uparrow I proved that a normal division algebra D of degree p, a prime, over a field F of characteristic not p, is cyclic if and only if D contains a sub-field F(y), $y^p = \gamma$ in F. This result evidently leads to the conjecture that any normal division algebra D of degree n over F is cyclic over F if and only if D contains a maximal sub-field, F(y), $y^p = \gamma$ in F.

The conjectured criterion given above would be of fundamental importance for the theory of the structure of normal division algebras. Without loss of generality we may assume that $n = p^s$, p a prime, and the theory then gives rise to two distinct cases according as F does or does not have characteristic p. We shall consider the former case here and give a brief simple proof of the criterion.

2. Cyclic fields of degree p^e . Let F be a field of characteristic $p \neq 0$. An equation

$$\lambda^p = \lambda + \alpha \qquad (\alpha \text{ in } F)$$

is called a normed equation. If x is a root of (1) so are $x+1, x+2, \dots, x+p-1$, and we have the Artin-Schreier lemmas:

LEMMA 1. A normed equation is either cyclic or has its roots in F. Every cyclic field of degree p over F may be generated by a root of a normed equation.

LEMMA 2. Let Z = F(x) be cyclic of degree p over F,

$$(2) x^p = x + \alpha (\alpha \ in \ F).$$

Then a quantity x_0 of Z satisfies a normed equation if and only if

$$x_0 = kx + b$$
 $(k = 0, 1, \dots, p-1; b \text{ in } F).$

Let Z_e be cyclic of degree p^e over F so that

(3)
$$Z_e > Z_{e-1} > \cdots > Z_1 > Z_0 = F$$
,

where Z_i is cyclic of degree p^i over F, cyclic of degree p over Z_{i-1} . I have proved \uparrow that $Z_i = F(x_i)$,

^{*} Presented to the Society, April 20, 1935; received by the editors March 26, 1935.

[†] These Transactions, vol. 36 (1934), pp. 885-892.

[‡] For the properties of this section see my paper in the Bulletin of the American Mathematical Society, vol. 40 (1934), pp. 625-631.

(4)
$$x_{i}^{p} = x_{i} + a_{i} \qquad (a_{i} \text{ in } Z_{i-1}),$$

and that Z_e has a generating automorphism S given by

$$(5) x_i \longleftrightarrow x_i^S = x_i + \beta_i,$$

where*

(6)
$$\beta_{i+1} = (x_1 x_2 \cdots x_i)^{p-1}, \quad T_{Z_i/F}(\beta_i) = (-1)^i,$$

and

$$a_i^{\mathcal{S}} - a_i = \beta_i^{\mathcal{P}} - \beta_i.$$

Every quantity of Z_{\bullet} has the form

(8)
$$a = \sum_{i_j=0}^{p-1} \alpha_{i_1 i_2, \dots, i_e} x_1^{i_1} \cdots x_e^{i_e} \qquad (\alpha_{i_1, \dots, i_e} \text{ in } F).$$

Write $\alpha_0 = \alpha_{p-1}, \ldots, p-1$ so that

$$a = \alpha_0 \beta_{e+1} + a_0.$$

I have proved that there exists a quantity c in Z_e such that $a_0 = c^S - c$. Then

$$T_{Z_{e}/F}(a_{0}) = 0, \qquad T_{Z_{e}/F}(a) = (-1)^{e}\alpha_{0}, \qquad a = \alpha_{0}\beta_{e+1} + c^{S} - c.$$

If $T_{Z_e/F}(a) = 0$ then $\alpha_0 = 0$ and $a = c^S - c$, while conversely $a = c^S - c$ implies that $T_{Z_e/F}^{\mathfrak{q}}(a) = 0$. When also $a = d^S - d$ then $d - c = \gamma$ has the property $\gamma = \gamma^S$, γ is in F. We thus have

LEMMA 3. Let Z_e be cyclic of degree p^e over F and with generating automorphism S. Then

$$T_{Z_{\bullet}/F}(a) = 0 (a in Z_{\bullet}),$$

if and only if

$$a = c^{S} - c (c in Z_{\bullet}).$$

Moreover (10) has a unique solution c apart from an additive constant in F.

LEMMA 4. The field Z_e of Lemma 3 contains a quantity β_{e+1} such that

(11)
$$T_{Ze/F}(\beta_{e+1}) = (-1)^{e}$$

and every a of Ze has the form

(12)
$$a = T_{Z/F}(a)(-1)^{\bullet}\beta_{\bullet+1} + c^{S} - c \qquad (c \ in \ Z_{\bullet}).$$

In particular I have proved that

(13)
$$T_{Z/F}(\beta_{s+1}^{p} - \beta_{s+1}) = 0$$

^{*} We write $T_{Z/F}(a)$ for the trace of the quantity a in Z over F.

so that $\beta_{e+1}^p - \beta_{e+1} = a_{e+1}^S - a_{e+1}$. Then I have shown that the field $F(x_{e+1})$ determined by

$$(14) x_{e+1}^p = x_{e+1} + a_{e+1}$$

is cyclic of degree p^{e+1} over F with Z_e as sub-field and generating automorphism given by $x_{e+1}^S = x_{e+1} + \beta_{e+1}$ and that of Z_e .

3. Cyclic algebras of degree p over F. Consider n-rowed square matrices A with elements in an infinite field F of characteristic p.

Two *n*-rowed square matrices A, B with elements in F are similar in F if and only if they have the same invariant factors. The minimum equation of A is the equation obtained by setting its invariant factor $\phi(\lambda)$ of highest degree in λ equal to zero. When $\phi(\lambda)$ has degree n it coincides with the characteristic polynomial of A and every B such that $\phi(B) = 0$ is similar to A.

In particular let n=p and $y^p=\gamma$ in F, y be in a total matric algebra M of degree p over F. By a proper choice of the representation of M by the algebra of all p-rowed square matrices with elements in F we may take

(15)
$$y = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \vdots & \ddots & \ddots & 1 \\ \gamma & 0 & \cdots & \ddots & 0 \end{pmatrix}.$$

Since F is an infinite field there exists a quantity $\xi \neq 0, 1, \dots, p-1$ in F and thus

(16)
$$x = \begin{bmatrix} \xi & & & & \\ & \xi + 1 & & & \\ & & \ddots & & \\ & & & \xi + p - 1 \end{bmatrix}$$

is non-singular. A trivial computation gives

(17)
$$x^p = x + \alpha, \quad yx = (x+1)y,$$

where $\alpha = \xi^p - \xi$ is in F.

We now let D be a normal division algebra of degree p over F and let $y^p = \gamma$ in F for y in D but not in F. There exists a separable field $K = F(\eta)$ of degree p over F such that D_K is a total matric algebra over F. Then D is equivalent to an algebra of p-rowed square matrices with elements in K and the quantities $1, \eta, \dots, \eta^{p-1}$ are linearly independent in D, the quantities

 $1, y, \dots, y^{p-1}$ are linearly independent in K. We have thus proved that there exists a quantity x in D_K such that yx = (x+1)y.

We write

(18)
$$x = x_0 + x_1 \eta + \cdots + x_{p-1} \eta^{p-1}$$
 $(x_i \text{ in } D)$

and the equation yx = (x+1)y is equivalent to

$$[xy_0-(x_0+1)y]+(yx_1-x_1y)\eta+\cdots+(yx_{p-1}-x_{p-1}y)\eta^{p-1}=0.$$

Thus $yx_0 = (x_0+1)y$ where $y \neq 0$, $x_0 \neq 0$ are in D. The minimum equation of x_0 has degree p over F and x_0+1 in $F(x_0)$ as a root. The field $Z=F(x_0)$ is cyclic over F and D is a cyclic algebra. The converse is well known and we have

THEOREM 1. Let D be a normal division* algebra of degree p over F of characteristic p. Then D is cyclic if and only if D contains an inseparable sub-field F(y), $y^p = \gamma$ in F.

4. Cyclic fields over K = F(y). Let K = F(y) be inseparable of degree p over F, $y^p = \gamma$ in F, and let $Z = Z_e$ be cyclic of degree p^e over K. Then (3)–(7) are satisfied with β_{i+1} , a_{i+1} in $Z_i = K(x_i)$. Write $a_1 = \sum_{i=0}^{p-1} \alpha_i y^i$ with α_i in F so that $a_1^p = \sum_i \alpha_i^p y^{ip} = \sum_i \alpha_i^p \gamma^i = a_{01}$ is in F. Then $x_{01} = x_1^p$ has the property $x_{01}^p - x_{01} = (x_1^p - x_1)^p = a_1^p = a_{01}$ is in F. But in fact $x_{01} = x_1 + a_1$ generates $K(x_1)$. Hence

$$Z_1 = Z_{01} \times K$$

where Z_{01} is cyclic of degree p over F. We may in fact prove

THEOREM 2. Let Z be cyclic of degree p^e over K = F(y), $y^p = \gamma$ in F. Then Z is the direct product

$$Z = Z_0 \times K$$
, $Z_0 = F(x)$, $Z = K(x)$,

where Z_0 is cyclic of degree p^e over F.

For let the above theorem be true for the sub-field Z_{i-1} of Z_{i} . Then $Z_{i-1} = Z_{i-1,0} \times K$ and β_i of (6) is in $Z_{i-1,0}$. We also have $Z_i = Z_{i-1}(x_i)$, $x_i^p = x_i + a_i$ and may write $a_i = \sum a_{ij} y^i$, $a_{i0} = a_i^p = \sum a_{ij} \gamma^j$ in $Z_{i-1,0}$. The quantity $x_{i0} = x_i + a_i$ $= x_i^p$ generates Z_i over K and $x_{i0}^p = x_{i0} + a_{i0}$, $x_{i0}^s = x_{i0} + \beta_i$ where a_{i0} and β_i are in $Z_{i-1,0}$. Thus $Z_{i,0} = Z_{i-1,0}(x_{i0})$ and $Z_i = Z_{i0} \times K$. The induction is complete and Theorem 2 is proved.

5. Cyclic algebras of degree po over F. We shall now prove

THEOREM 3. Let D be a normal division algebra of degree $n = p^{\circ}$ over F of characteristic p and let F(y) be a maximal sub-field of D, $y^n = \gamma$ in F. Then D is a cyclic algebra

^{*} If F is a finite field there exist no normal division algebras of degree greater than unity over F.

$$(Z, S, \gamma)$$

where $yx = x^{S}y$ for every x of Z.

For assume that the theorem is true for algebras of degree $p^i < p^e$ and let D have degree p^e over F and contain y such that $y^n = \gamma$ in F, F(y) is a maximal sub-field of D. Define

$$m = p^{e-1}, \qquad y_m = y^m,$$

so that the algebra B of all quantities of D commutative with y_m is a normal division algebra of degree m over $K = F(y_m)$. By the hypothesis of our induction there exists a cyclic field Z_0 of degree m over K in B such that $yz = z^Sy$. Theorem 2 states that $Z_0 = Z_{e-1} \times K$ where Z_{e-1} is cyclic of degree m over F. Any change in the generating automorphism of Z_0 is accomplished by replacing y by y^r , r prime to p, so we may assume without loss of generality that $yz = z^Sy$ for every z of Z_{e-1} where S generates the cyclic automorphism group of Z_{e-1} . Write $Z_{e-1} = F(x_{e-1})$.

The algebra G of all quantities of D commutative with x_{e-1} is a normal division algebra of degree p over Z_{e-1} and contains y_m . By the hypothesis of our induction there exists an x_{01} in G such that $y_m x_{01} = (x_{01} + 1)y_m$. Then $x_0 = (-1)^{e-1}x_{01}$ has the properties

$$x_0^p = x_0 + a_0, y_m x_0 = [x_0 + (-1)^{e-1}] y_m \equiv x_0^{S_0} y_m,$$

with a_0 in $Z_{\epsilon-1}$. The quantity y transforms x_0 in G into

$$yx_0y^{-1} = x_{0y} \text{ in } G, \qquad x_{0y}^p = x_{0y} + a_0^S, \qquad y_mx_{0y} = (x_{0y} + \delta)y_m$$

where

$$\delta = (-1)^{e-1} = T_{Z_{e-1}/F}(\beta_e), \qquad y_m y = y y_m.$$

Write $x_{0y} = \sum_{i=0}^{p-1} b_i y_m^i$ with b_i in $Z_{e-1}(x_0)$ and have

$$\sum_{i=0}^{p-1} b_i(x_0+\delta)y_m^{i+1} = \delta y_m + \sum_{i=0}^{p-1} b_i(x_0)y_m^{i+1}, \qquad b_i(x_0+\delta) \equiv b_i^{S_0} \text{ in } Z_{e-1}(x_0).$$

Thus $b_i(x_0+\delta) = b_i$ is in Z_{e-1} for $i=1, \dots, m$, $b_0(x_0+\delta) = b_0+1$. By Lemma 2 we have $b_0 = kx_0+\beta$ with k an integer and β in Z_{e-1} . Then $(x_0+\delta)k+\beta = kx_0+\beta+\delta$, k=1, $b_0=x_0+\beta$,

$$x_{0y} = x_0 + P(y_m)$$

where $P(y_m)$ is in $Z_{e-1}(y_m)$.

^{*} Note the analogy between this result and the theorem that $y_0x = x^Sy_0$ if and only if $y_0 = Py$ with P in F(x).

The field $Z_0 = Z_{e-1}(y_m) = Z_{e-1} \times F(y_m)$ is cyclic of degree p^{e-1} over $K = F(y_m)$. Thus $yx_0y^{-1} = x_0 + P$, $y^2x_0y^{-2} = x_0 + P + P^S$, and finally $y^mx_0y^{-m} = x_0 + T_{Z_0/K}(P) = y_mx_0y_m^{-1} = x_0 + \delta$, $T_{Z_0/K}(P) = T_{Z_{e-1}/K}(\beta_e)$, and, since $Z_0 = Z_{e-1} \times K$,

$$T_{Z_{\alpha}/K}(\beta_{\alpha}-P)=0.$$

We apply Lemma 3 and obtain a quantity g in Z_0 such that $g^s - g = \beta_c - P$. Define $x_{e0} = x_0 + g$ and obtain $x_{e0}^p = x_{e0} + a_{e0}$,

$$yx_e = (x_{0y} + g^S)y = (x_0 + P + g + \beta_e - P)y = (x_e + \beta_e)y.$$

Then $x_{e0}^S = x_e + \beta_e$ satisfies $(x_{e0}^S)^p = x_{e0}^S + a_{e0}$, and $K(x_{e0})$ is cyclic of degree p^e over K. By Theorem 2 the field $K(x_{e0}) = K \times Z_e$ where Z_e is cyclic of degree p^e over F and has the same generating automorphism as Z_{e0} . In fact $Z_e = F(x_e)$, $x_e = x_{e0} + a_{e0} = x_{e0}^p$, $x_e = x_e^S + \beta_e$. We have proved Theorem 3.

University of Chicago, Chicago, Ill.